Chromosomal Distribution of Cytonuclear Genes in a Dioecious Plant with Sex Chromosomes
نویسندگان
چکیده
The coordination between nuclear and organellar genes is essential to many aspects of eukaryotic life, including basic metabolism, energy production, and ultimately, organismal fitness. Although nuclear genes are biparentally inherited, mitochondrial and chloroplast genes are almost exclusively maternally inherited, and this asymmetry may lead to a bias in the chromosomal distribution of nuclear genes whose products act in the mitochondria or chloroplasts. In particular, because X-linked genes have a higher probability of cotransmission with organellar genes (2/3) compared with autosomal genes (1/2), selection for coadaptation has been predicted to lead to an overrepresentation of nuclear-mitochondrial and nuclear-chloroplast genes on the X chromosome relative to autosomes. In contrast, the occurrence of sexually antagonistic organellar mutations might lead to selection for movement of cytonuclear genes from the X chromosome to autosomes to reduce male mutation load. Recent broad-scale comparative studies of N-mt distributions in animals have found evidence for these hypotheses in some species, but not others. Here, we use transcriptome sequences to conduct the first study of the chromosomal distribution of cytonuclear interacting genes in a plant species with sex chromosomes (Rumex hastatulus; Polygonaceae). We found no evidence of under- or overrepresentation of either N-mt or N-cp genes on the X chromosome, and thus no support for either the coadaptation or the sexual-conflict hypothesis. We discuss how our results from a species with recently evolved sex chromosomes fit into an emerging picture of the evolutionary forces governing the chromosomal distribution of nuclear-mitochondrial and nuclear-chloroplast genes.
منابع مشابه
Sex chromosomes in flowering plants.
Sex chromosomes in dioecious and polygamous plants evolved as a mechanism for ensuring outcrossing to increase genetic variation in the offspring. Sex specificity has evolved in 75% of plant families by male sterile or female sterile mutations, but well-defined heteromorphic sex chromosomes are known in only four plant families. A pivotal event in sex chromosome evolution, suppression of recomb...
متن کاملGender in plants: sex chromosomes are emerging from the fog.
Although most plants have flowers with both male and female sex organs, there are several thousands of plant species where male or female flowers form on different individuals. Surprisingly, the presence of well-established sex chromosomes in these dioecious plants is rare. The best-described example is white campion, for which large sex chromosomes have been identified and mapped partially. A ...
متن کاملEvidence for Degeneration of the Y Chromosome in the Dioecious Plant Silene latifolia
The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements ...
متن کاملHill-Robertson Interference Reduces Genetic Diversity on a Young Plant Y-Chromosome.
X and Y chromosomes differ in effective population size (Ne ), rates of recombination, and exposure to natural selection, all of which can affect patterns of genetic diversity. On Y chromosomes with suppressed recombination, natural selection is expected to eliminate linked neutral variation, and lower the Ne of Y compared to X chromosomes or autosomes. However, female-biased sex ratios and hig...
متن کاملPremature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia.
Most dioecious plant species are believed to derive from hermaphrodite ancestors. The regulatory pathways that have been modified during evolution of the hermaphrodite ancestors and led to the emergence of dioecious species still remain unknown. Silene latifolia is a dioecious plant species harboring XY sex chromosomes. To identify the molecular mechanisms involved in female organ suppression i...
متن کامل